Approximate extension in Sobolev space

نویسندگان

چکیده

Let Lm,p(Rn) be the homogeneous Sobolev space for p?(n,?), ? a Borel regular measure on Rn, and Lm,p(Rn)+Lp(d?) of measurable functions with finite seminorm ?f?Lm,p(Rn)+Lp(d?):=inff1+f2=f?{?f1?Lm,p(Rn)p+?Rn|f2|pd?}1/p. We construct linear operator T:Lm,p(Rn)+Lp(d?)?Lm,p(Rn), that nearly optimally decomposes every function in sum space: ?Tf?Lm,p(Rn)p+?Rn|Tf?f|pd??C?f?Lm,p(Rn)+Lp(d?)p C dependent m, n, p only. For E?Rn, let Lm,p(E) denote all restrictions to E F?Lm,p(Rn), equipped standard trace seminorm. we extension T:Lm,p(E)?Lm,p(Rn) satisfying Tf|E=f|E ?Tf?Lm,p(Rn)?C?f?Lm,p(E), where depends only p. show these operators can expressed through collection functionals whose supports have bounded overlap.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate $n-$ideal amenability of module extension Banach algebras

Let $mathcal{A}$ be a Banach algebra and $X$ be a Banach $mathcal{A}-$bimodule. We study the notion of approximate $n-$ideal amenability for module extension Banach algebras $mathcal{A}oplus X$. First, we describe the structure of ideals of this kind of algebras and we present the necessary and sufficient conditions for a module extension Banach algebra to be approximately n-ideally amenable.

متن کامل

Sobolev Metrics on Shape Space of Surfaces in N-space

This paper extends parts of the results from [14] for plane curves to the case of surfaces in Rn. Let M be a compact connected oriented manifold of dimension less than n without boundary. Then shape space is either the manifold of submanifolds of Rn of type M , or the orbifold of immersions from M to Rn modulo the group of diffeomorphisms of M . We investigate the Sobolev Riemannian metrics on ...

متن کامل

Sobolev Metrics on Shape Space of Hypersurfaces in N-space

This paper extends parts of the results from [10] for plane curves to the case of hypersurfaces in R. Let M be a compact connected oriented n − 1 dimensional manifold without boundary. Then shape space is either the manifold of submanifolds of R of type M , or the orbifold of immersions from M to R modulo the group of diffeomorphisms of M . We investigate the Sobolev Riemannian metrics on shape...

متن کامل

Sobolev Space Projections in Strictly Pseudoconvex Domains

The orthogonal projection from a Sobolev space WS(Q) onto the subspace of holomorphic functions is studied. This analogue of the Bergman projection is shown to satisfy regularity estimates in higher Sobolev norms when ß is a smooth bounded strictly pseudoconvex domain in C". The Bergman projection P0: L2(ü) -» L2(S2) n {holomorphic functions}, where S2 c C" is a smooth bounded domain, has prove...

متن کامل

Sobolev Spaces on an Arbitrary Metric Space

We define Sobolev space J V ' , ~ for 1 < p < (x, on an arbitrary metric space with finite diameter and equipped with finite, positive Bore1 measure. In the Euclidean case it coincides with standard Sobolev space. Several classical imbedding theorems are special cases of general results which hold in the metric case. We apply our results to weighted Sobolev space with Muckenhoupt weight. Mathem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2023

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2023.108999